Bekir Hakan Köksal


This study was conducted to determine the effects of butyric acid addition in corn-based or wheat/barley-based diets on growth performance and intestinal morphology of broilers. Two hundred and forty one-day old male broiler (Ross-308) chicks were assigned to 4 treatments in 2 × 2 factorial arrangement of dietary butyric acid (0 and 0.2%) and grains (corn and wheat/barley) with 4 replicate pens in each treatment, each having 15 birds. Feed and water was provided ad libitum throughout the experiment. Results indicated that dietary butyric acid supplementation in wheat/barley based diets had improving effects on body weight, body weight gain and feed intake at day 42 of experiment (p<0.05). Moreover, the addition of butyric acid in different source of grain based diets also improved the feed efficiency of birds at days 1-21 of the trial (p<0.001). Similarly, crypt depth of jejunum was significantly affected dietary butyric acid inclusion in birds at 21 day of age whereas villus height was higher in birds fed wheat/barley based diets (p<0.05 and p<0.01, respectively). In conclusion, butyric acid supplementation to wheat/ barley based diets seems to be useful practice for broiler chickens.

Full Text:



- Van Immerseel, F., Boy, E. N. F., Gantois, I., Timbermont, L., Bohez, L., Pasmans, F., Haesebrouck, F., Ducatelle, R., 2005. Supplementation of coated butyric acid in the feed educes colonization and shedding of Salmonella in poultry. Poultry Sci. 84: 1851- 1856.

- Langhout, P., 2000. New additives for broiler chickens. Feed Mix, pp. 24–27.

- Pryde, S.E., Duncan, S. H., Hold, G. I., Stewart, C. S., Flint, H. J., 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217:133–139.

- Friedman, A., Bar-Shira, E., 2005. Effect of nutrition on development of immune competence inchickens gut associated lymphoid system. Proc. 15th Eur. Symp. on Poultry Nutrition. WPSA, Balatonfüred, Hungary, pp 234-242.

- Brons, F., Kettlitz, B., Arrigoni, E. 2002. Resistant starch and the butyrate revolution. Trends Food Sci. Technol. 13: 251–261.

- Isolauri, E., Salminen, S., Ouwehand, A. C., 2004. Probiotics. Best Pract. Res. 18: 299-313.

- Jósefiak, D., Rutkowski, A., Martin, S. A., 2004. Carbohydrate fermentation in the avian ceca: a review. Anim. Feed Sci. Technol. 113: 1-15.

- Adams, C.A., 2004: Nutricines in poultry production: focus on bioactive feed ingredients. Nutr. Abstr. Rev. (B):1-12.

- Leeson, S., Namkung, H., Antongiovanni, M., Lee, E. H., 2005. Effect of butyric acid on the performance and carcass yield of broiler chickens. Poult. Sci. 84: 1418-1422.

- Mansoub, N. H., Rahimpour, K., Majedi, L., Nezhady, M. A. M., Zabih, S. L., Kalhori, M. M. 2011. Effect of Different Level of Butyric Acid Glycerides on Performance and Serum Composition of Broiler Chickens. World J. Zoology 6 (2): 179-182.

- National Research Council, 1994. Nutrient Requirements of Poultry. 9th ed. National Academy Press, Washington, DC, USA.

- Culling, C. F. A., Allison, R. T., Bar, W. T., 1985. Cellular Pathology Technique, 4th Edition, Butterworth and Co. Ltd., London. pp 167-171.

- Xu, Z. R., Hu, C. H., Xia, M. S., Zhan, X. A., Wang, M. Q., 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, ıntestinal microflora and morphology of male broilers. Poult. Sci. 82: 1030-1036.

- Li, P., Lin, J. E., Chervoneva, I., Schulz, S., Waldman, S. A., Pitari, G. M., 2007. Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase c restricts the proliferating compartment in ıntestine. Am. J. Pathol., 171: 1847-1858.

- Steel, R.G. D., Torrie, J. H., Dickey, D. A. 1997. Principles and procedures of statistics: A biometrical approach, 3rd ed. McGraw-Hill Publishing, New York.

- Antongiovanni M., Buccioni A., Petacchi F., Leeson S., Minieri S., Martini A., Cecchi R., 2007. Butyric acid glycerides in the diet of broiler chickens: effects on gut histology and carcass composition. Ital. J. Anim. Sci. 6: 19-25.

- Panda, A. K., Rama Rao, S. V., Raju, M. V. L. N., Shyam Sunder, G., 2009. Effect of Butyric Acid on Performance, Gastrointestinal Tract Health and Carcass Characteristics in Broiler Chickens. Asian-Aust. J. Anim. Sci. Vol. 22, No. 7: 1026 – 1031.

- Hartini, S., Choct, M., Hinch, G., Kocher, A., Nolan, J. V., 2002. Effects of light intensity during rearing, beak trimming and dietary fibre sources on mortality, egg production and performance of ISA brown laying hens. J. Appl. Poultry Res. 11: 104–110.

- Hetland, H., Svihus, B., Krogdahl, A., 2003. Effects of oat hulls and wood shavings on digestion in broilers and layers fed diets based on whole or ground wheat. Brit. Poultry Sci. 44: 275–282.

- Hetland, H., Svihus, B., Choct, M., 2004. Role of insoluble non-starch polysaccharides in poultry nutrition. World’s Poultry Sci. 60: 415–422.

- Sigleo, S., Jackson, M. J, Vahouny, G. V., 1984. Effect of dietary fibre constituents on intestinal morphology and nutrient transport. Am. J. Physiol. 246: 34-39.

- Moore, R. J., Kornegay, E. T., Grayson, R. L., Lindemann, M. D., 1988. Growth, nutrient utilisation and intestinal morphology of pigs fed high-fibre diets. J. Anim.Sci. 66: 1570-1579.

- Yamauchi, K. E., Isshiki, Y., 1991. Scanning electron microscopic observations on the intestinal villi in growing white leghorn and broiler chickens from I to 30 days of age. Brit. Poultry Sci. 32: 67-78.

- Adil, S., Banday, T., Bhat, G. A., Mir, M. S., Rehman, M., 2010. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. Med. Int. 2010, Article ID 479485, 7 pages doi:10.4061/2010/479485

 Creative Commons License
This work is licensed under Creative Commons Attribution 4.0 International License
Print ISSN:1302-3209 - Online ISSN:2147-9003

Journal of Poultry Research (JPR) is indexed in: